Chapter 6

Groundwater

Jim Heffner, John Reed, and Dan Wells Environmental Services Section

Bob Hiergesell

Environmental Sciences and Technology

ROUNDWATER protection at the Savannah River Site (SRS) has evolved into a program with the following primary components:

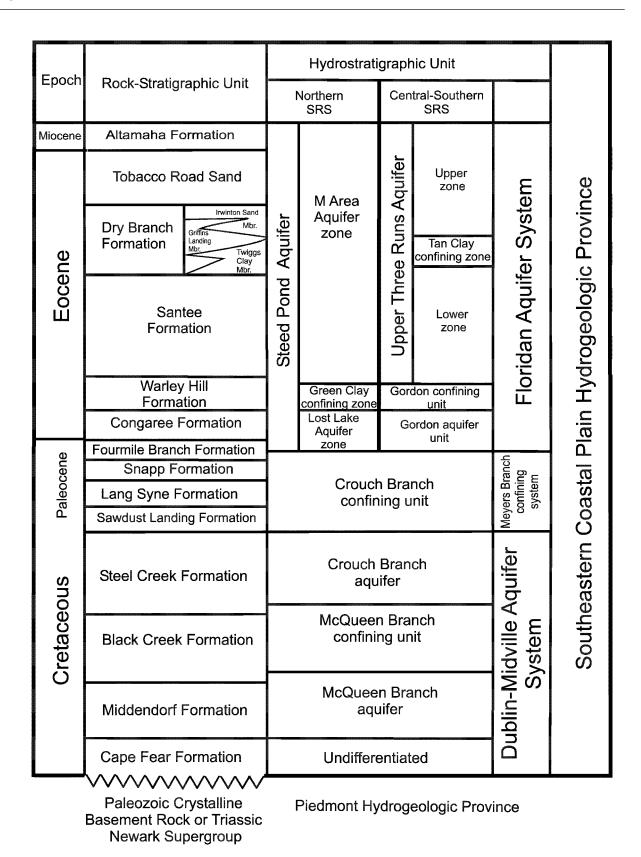
- Protect groundwater by good practices in managing chemicals and work.
- Monitor groundwater to identify areas of contamination.
- Remediate contamination as needed.
- Use groundwater wisely to conserve.

SRS operations have contaminated groundwater around certain waste disposal facilities. Extensive monitoring and remediation programs are tracking and cleaning up the contamination. Remediation includes (1) the closing of waste sites to reduce the migration of contaminants into groundwater and (2) the active treatment of contaminated water.

No offsite wells have been contaminated by the migration of SRS groundwater.

This chapter describes SRS's groundwater environment and the programs in place for investigating, monitoring, remediating, and using the groundwater.

SRS groundwater monitoring results for 2002 are summarized in the *Savannah River Site Soil and Groundwater Closure Projects 2002 Annual Report* (http://www.srs.gov/general/enviro/erd/gen/geninf.ht ml) Additional information and updates about groundwater monitoring, contamination, and cleanup can be found in the *Federal Facility Agreement Annual Progress Report for FY 2002* (http://www.srs.gov/general/enviro/erd/ffa/ffa.html). Also, beginning in 2002, an annual report covering the previous year of the Groundwater Surveillance Monitoring Program (ESH–ECS–2002–00189) was issued.


Groundwater at SRS

SRS is underlain by sediment of the Atlantic Coastal Plain. The Atlantic Coastal Plain consists of a southeast-dipping wedge of unconsolidated sediment that extends from its contact with the Piedmont Province at the Fall Line to the edge of the continental shelf. The sediment ranges from Late Cretaceous to Miocene in age and comprises layers of sand, muddy sand, and clay with subordinate calcareous sediments. It rests on crystalline and sedimentary basement rock.

Water flows easily through the sand layers but is retarded by less permeable clay beds, creating a complex system of aquifers. Operations during the life of SRS have resulted in contamination migrating into groundwater at various locations on the site, predominantly in the central areas of the site. The ongoing movement of water into the ground, through the aquifer system, and then into streams and lakes—or even into deeper aquifers—continues to carry contamination along with it, resulting in spreading plumes.

The hydrostratigraphy of SRS has been subject to several classifications. The hydrostratigraphic classification established in Aadland et al., 1995, and in Smits et al., 1996, is widely used at SRS and is regarded as the current SRS standard. This system is consistent with the one used by the U.S. Geological Survey (USGS) in regional studies that include the area surrounding SRS [Clarke and West, 1997]. Figure 6–1 is a chart that indicates the relative position of hydrostratigraphic units and relates hydrostratigraphic units to corresponding lithologic units at SRS and to the geologic time scale. This chart was modified from Aadland et al., 1995, and Fallaw and Price, 1995.

The hydrostratigraphic units of primary interest beneath SRS are part of the Southeastern Coastal Plain Hydrogeologic Province. Within this sequence of aquifers and confining units are two principal subcategories, the overlying Floridan Aquifer System and the underlying Dublin-Midville Aquifer System. These systems are separated from one another by the Meyers Branch Confining System. In turn, each of the systems is subdivided into two aquifers, which are separated by a confining unit.

Modified from Aadland et al, 1995, and Fallaw and Price, 1995

Figure 6-1 Hydrostratigraphic Units at SRS

In the central to southern portion of SRS, the Floridan Aquifer System is divided into the overlying Upper Three Runs Aquifer and the underlying Gordon Aguifer, which are separated by the Gordon Confining Unit. North of Upper Three Runs Creek, these units are collectively referred to as the Steed Pond Aquifer, in which the Upper Three Runs Aquifer is called the M-Area Aquifer zone, the Gordon Aguifer is referred to as the Lost Lake Aquifer zone, and the aquitard that separates them is referred to as the Green Clay confining zone [Aadland et al., 1995]. The Upper Three Runs Aquifer/Steed Pond Aquifer is the hydrostratigraphic unit within which the water table usually occurs at SRS; hence, it is informally referred to as the "water table" aquifer.

The Dublin-Midville Aquifer System is divided into the overlying Crouch Branch Aquifer and the underlying McQueen Branch Aquifer, which are separated by the McQueen Branch Confining Unit. The Crouch Branch Aquifer and McQueen Branch Aquifer are names that originated at SRS [Aadland et al., 1995]. These units are equivalent to the Dublin Aquifer and the Midville Aquifer, which are names originating with the USGS [Clarke and West, 1997].

Figure 6–2 is a three-dimensional block diagram of the hydrogeologic units at SRS and the generalized groundwater flow patterns within those units. These units are from shallowest to deepest: the Upper Three Runs/Steed Pond Aquifer (or water table aquifer), the Gordon/Lost Lake Aquifer, the Crouch Branch Aquifer, and the McQueen Branch Aquifer.

Groundwater recharge is a result of the infiltration of precipitation at the land surface; the precipitation moves vertically downward through the unsaturated zone to the water table. Upon entering the saturated zone at the water table, water moves predominantly in a horizontal direction toward local discharge zones along the headwaters and midsections of streams, while some of the water moves into successively deeper aguifers. The water lost to successively deeper aquifers also migrates laterally within those units toward the more distant regional discharge zones. These typically are located along the major streams and rivers in the area, such as the Savannah River. Groundwater movement within these units is extremely slow when compared to surface water flow rates. Groundwater velocities also are quite different between aguitards and aguifers, ranging at SRS from several inches to several feet per year in aquitards and from tens to hundreds of feet per year in aquifers.

Monitoring wells are used extensively at SRS to assess the effect of site activities on groundwater quality. Most of the wells monitor the upper groundwater zone, although wells in lower zones are present at the sites with the larger groundwater contamination plumes. Groundwater in some areas contains one or more constituents at or above the levels of the DWS of the U.S. Environmental Protection Agency (EPA). These areas can be seen in figure 16 of the "SRS Maps" appendix on the CD accompanying this report.

Groundwater Protection Program at SRS

The SRS groundwater program was audited by both the U.S. Department of Energy (DOE) and WSRC during 2000 and 2001. Findings of these assessments have resulted in an ongoing evaluation of the goals and priorities of the site groundwater program, illustrated by a revision of the Groundwater Protection Management Program Plan (GPMP; WSRC–TR–2001–00379) to codify improvements to the program. The GPMP describes elements of the SRS program that are designed to meet federal and state laws and regulations, DOE orders, and site policies and procedures. These elements include

- investigating site groundwater
- using site groundwater
- protecting site groundwater
- monitoring site groundwater
- remediating contaminated site groundwater

SRS identified specific program goals in each of these areas to maintain its commitment to a groundwater program that protects human health and the environment. Groundwater monitoring is a key tool used in each of the first four elements, and monitoring results form the basis for evaluations that are reported to site stakeholders.

Investigating SRS Groundwater

An extensive program is in place at SRS to acquire new data and information on the groundwater system. This program is multifaceted and is conducted across departmental boundaries at the site because of the different charters and mandates of these organizations. Investigations include both the collection and analysis of data to understand groundwater conditions on regional and local scales at SRS. Research efforts at the site generally are conducted to obtain a better understanding of subsurface processes and mechanisms or to define new approaches to subsurface remediation.

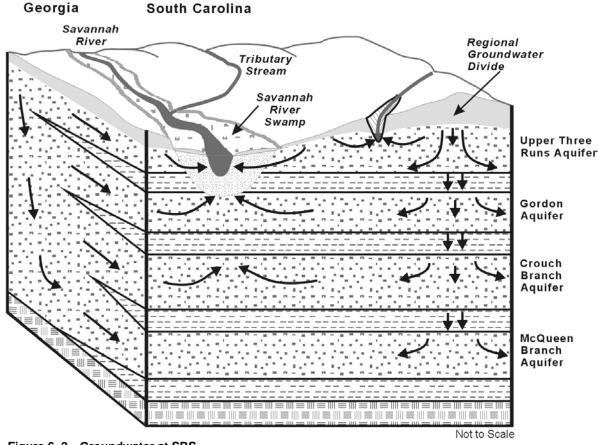
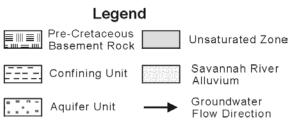



Figure 6-2 Groundwater at SRS

The groundwater flow system at SRS consists of four major aquifers separated by confining units. Flow in recharge areas generally migrates downward as well as laterally—eventually either discharging into the Savannah River and its tributaries or migrating into the deeper regional flow system.

Modified from Clarke and West, 1997

Investigative efforts focus on the collection and analysis of data to characterize the groundwater flow system. Characterization efforts at SRS include the following activities:

- the collection of geologic core material and the performing of seismic profiles to better delineate subsurface structural features
- the installation of wells to allow the periodic collection of both water levels and groundwater samples at strategic locations
- the development of water table and potentiometric maps to delineate the direction of groundwater movement in the subsurface
- the performance of various types of tests to obtain *in situ* estimates of hydraulic parameters needed to estimate groundwater velocities

Analysis of data on the regional scale is needed to provide a broad understanding of groundwater movement patterns at SRS that can be used as a framework to better understand the migration of contaminants at the local scale near individual waste units. Surface water flow characteristics also are defined at the site on the regional scale and are significant to risk analyses because perennial streams are the receptors of groundwater discharge—some of which contains contaminants from SRS waste units. Because the site boundary does not represent a groundwater boundary, regional studies are helpful in understanding the movement of groundwater both onto the site from the surrounding area and vice versa.

The collection and analysis of data describing subsurface hydrogeologic conditions at or near

54 Savannah River Site

individual waste units is needed to design effective remediation systems. Characterization embraces both traditional and innovative technologies to accomplish this goal. The installation of monitoring wells and piezometers is a traditional investigative method to allow the collection of (1) water levels, which are used to define flow directions, and (2) groundwater samples, which are analyzed to monitor contaminant plume migration within the groundwater flow system. Electric logs acquired during well installation are used to delineate the subsurface hydrostratigraphy. Examples of newer technologies include the use of

- direct-push technology, such as the cone penetrometer, to collect one-time groundwater samples at investigation sites and to help establish hydrostratigraphic contacts
- the "rotosonic" method for bore holes to collect core and install wells

Numerical models have been used extensively as an analytical tool at SRS for both regional- and local-scale investigations. Models have been utilized for a variety of reasons, but primarily to (1) define the regional groundwater movement patterns at SRS and the surrounding areas, (2) enhance the understanding of contaminant migration in the subsurface, and (3) support the design of remediation systems. At SRS, major groundwater modeling efforts have focused on A/M-Area, F-Area, H-Area, the Burial Ground Complex, and several of the reactor areas where the most extensive subsurface contamination is known to exist.

Research on groundwater issues is conducted at SRS to obtain a better understanding of subsurface mechanisms, such as (1) the interaction of contaminants with the porous media matrix, and (2) the factors that impact the rate of migration of contaminants within the groundwater flow system. Research to address relevant issues often is conducted through cooperative studies with investigators at various public universities and private companies, while other efforts are conducted exclusively by SRS employees.

Using SRS Groundwater

SRS derives its own drinking and production water supply from groundwater. The site ranks as South Carolina's largest self-supplied industrial consumer of groundwater, utilizing approximately 5.3 million gallons per day. SRS domestic and process water systems are supplied from a network of approximately 40 site wells in widely scattered locations across the site, of which eight supply the primary drinking water system for the site. Treated

well water is supplied to the larger site facilities by the A-Area, D-Area and K-Area domestic water systems. Each system has wells, a treatment plant, elevated storage tanks, and distribution piping. The wells range in capacity from 200 to 1,500 gallons per minute.

These three systems supply an average of 1.1 million gallons per day of domestic water to customers in these areas. The domestic water systems supply site drinking fountains, lunchrooms, restrooms, and showering facilities with water meeting state and federal drinking water quality standards. Process water is used for equipment cooling, facility washdown water, and as makeup water for site cooling towers and production processes.

The South Carolina Department of Health and Environmental Control (SCDHEC) periodically samples the large- and small-system wells for Safe Drinking Water Act contaminants. An unscheduled biannual SCDHEC sanitary survey also is performed.

In 1983, SRS began reporting its water usage annually to the South Carolina Water Resources Commission (and later to SCDHEC). Since that time, the amount of groundwater pumped on site has dropped by 50 percent—from 10.8 million gallons per day during 1983–1986 to 5.3 million gallons per day during 1997–2000. The majority of this decrease is attributable to the consolidation of site domestic water systems, which was completed in 1997. Thirteen separate systems, each with its own supply wells, were consolidated into three systems located in A-Area, D-Area, and K-Area. Site facility shutdowns and reductions in population were also contributing factors. The amount of groundwater pumped at SRS has had only localized effects on water levels in the Cretaceous aquifers, and it is unlikely that water usage at the site ever will cause drawdown problems that could impact surrounding communities.

The process water systems in A-Area, F-Area, H-Area, K-Area, L-Area, S-Area and TNX-Area meet site demands for boiler feedwater, equipment cooling water, facility washdown water, and makeup water for cooling towers, fire storage tanks, chilled-water-piping loops, and site test facilities. These systems are supplied from dedicated process water wells ranging in capacity from 100 to 1,500 gallons per minute. In K-Area, the process water system is supplied from the domestic water wells. At some locations, the process water wells pump to ground-level storage tanks, where the water is treated for corrosion control. At other locations the wells directly pressurize the process water distribution piping system without supplemental treatment.

The site groundwater protection program integrates information learned about the properties of SRS aquifers with site demand for drinking and process water. SRS ensures a high level of drinking water supply protection by performing (1) monitoring above and beyond SCDHEC monitoring and (2) periodic evaluations of production wells. Additional protection will be realized under a site wellhead protection program that meets the requirements of the South Carolina Source Water Assessment Program described below.

Protecting SRS Groundwater

SRS is committed to protecting the groundwater resource beneath the site. A variety of activities contribute to this goal, including

- construction, waste management, and monitoring efforts to prevent or control sources of groundwater contamination
- monitoring programs (both groundwater and surface water) to detect contamination
- a strong groundwater cleanup program through the Soil and Groundwater Closure Projects Department

Monitoring around waste disposal sites and operating facilities provides the best means to detect and track groundwater contamination. To ensure that no unknown contamination poses a risk, SRS depends on a sitewide groundwater monitoring and protection effort—the site Groundwater Surveillance Monitoring Program (GSMP). This new program is an upgraded replacement of the site screening program.

One goal of the GSMP is to protect potential offsite receptors from contamination by detecting contamination in time to apply appropriate corrective actions. SRS is a large site, and most groundwater contamination is located in the central site areas. However, the potential for offsite migration exists, and the consequences of such an outcome are serious enough to warrant a comprehensive prevention program.

SRS has evaluated groundwater flow and determined, for each aquifer, where groundwater flows across the site boundary, since the location of groundwater flow would be a conservative surrogate for any potential contaminant migration.

Another pathway for existing groundwater contamination to flow offsite is by discharge into surface streams and subsequent transport into the Savannah River. SRS monitors site streams for contamination, and new wells have been installed in

recent years along several site streams to detect contamination before it enters the stream and to assess its concentration in groundwater.

Monitoring SRS Groundwater

The groundwater monitoring program at SRS gathers information to determine the effect of site operations on groundwater quality. The program is designed to

- assist SRS in complying with environmental regulations and DOE directives
- provide data to identify and monitor constituents in the groundwater
- permit characterization of new facility locations to ensure that they are suitable for the intended facilities
- support basic and applied research projects

The groundwater monitoring program at SRS includes two primary components: (1) waste site/remediation groundwater monitoring, overseen by the Geochemical Monitoring (GM) group of the Soil and Groundwater Closure Projects Department, and (2) groundwater surveillance monitoring, conducted by the Environmental Services Section. To assist other departments in meeting their responsibilities, personnel of both organizations provide the services for installing monitoring wells, collecting and analyzing samples, and reporting results.

The WSRC Environmental Compliance Manual (WSRC–3Q1) provides details about the following aspects of the groundwater monitoring program:

- well siting, construction, maintenance, and abandonment
- sample planning
- sample collection and field measurements
- analysis
- data management
- related publications, files, and databases

Monitoring data are evaluated each year to identify unexpected results in any site wells that might indicate new or changing groundwater contamination.

SRS is cooperating with SCDHEC to develop and implement source water assessment and protection programs. After an assessment program has been approved and implemented, the SRS groundwater protection program will focus on protection efforts. The primary aspect of the source water assessment and protection programs will be wellhead protection, given that SRS derives its drinking water exclusively

56 Savannah River Site

Sample Scheduling and Collection

The Geotechnical Monitoring group and the Environmental Services Section schedule groundwater sampling either in response to specific requests from SRS personnel or as part of their ongoing groundwater monitoring program. These groundwater samples provide data for reports required by federal and state regulations and for internal reports and research projects. The groundwater monitoring program schedules wells to be sampled at intervals ranging from quarterly to triennially.

Constituents that may be analyzed are commonly imposed by permit or work plan approval. Those include metals, field parameters, suites of herbicides, pesticides, volatile organics, and others. Radioactive constituents that may be analyzed by request include gross alpha and beta measurements, gamma emitters, iodine-129, strontium-90, radium isotopes, uranium isotopes, and other alpha and beta emitters.

Groundwater samples are collected from monitoring wells, generally with either pumps or bailers dedicated to the well to prevent cross-contamination among wells. Occasionally, portable sampling equipment is used; this equipment is decontaminated between wells.

Sampling and shipping equipment and procedures are consistent with EPA, SCDHEC, and U.S. Department of Transportation guidelines. EPA-recommended preservatives and sample-handling techniques are used during sample storage and transportation to both onsite and offsite analytical laboratories. Potentially radioactive samples are screened for total activity (alpha and beta emitters) prior to shipment to determine appropriate packaging and labeling requirements.

Deviations (caused by dry wells, inoperative pumps, etc.) from scheduled sampling and analysis for 2002 are entered into the site's groundwater database and issued in appropriate reports.

from groundwater. Other aspects will include strategies for preventing contamination and controlling existing contamination through the SRS program. The program will evaluate waste minimization, spill prevention and control, well abandonment, and future land use. More information about this initiative can be found at http://www.epa.gov/safewater/protect.html.

Remediating Contaminated SRS Groundwater

SRS has maintained an environmental restoration effort for many years. Soil and Groundwater Closure Projects personnel manage groundwater cleanup of contaminated groundwater associated with Resource Conservation and Recovery Act (RCRA) hazardous waste management facilities or Federal Facility Act units. Their mission is to aggressively manage the inactive waste site and groundwater cleanup program so that

- schedules for environmental agreements are consistently met
- the utilization of financial and technology resources are continually improved
- the overall risk posed by existing contaminated sites is continually reduced

The Soil and Groundwater Closure Projects strategy revolves around developing an appropriate regulatory framework for each waste site, assessing the degree and extent of contamination, and remediating the contaminated groundwater to its original beneficial use. In cases where that remediation goal is impractical, the intent is to prevent plume migration and exposure and to evaluate alternate methods of risk reduction.

Groundwater Monitoring Results

The first priority of the groundwater monitoring program at SRS is to ensure that contamination is not being transported from the site by groundwater flow. Contaminated groundwater at SRS discharges into site streams or the Savannah River. Nowhere have offsite wells been contaminated by groundwater from SRS, and only a few site locations have groundwater with even a remote chance of contaminating such wells

One such location is near A-Area/M-Area, the site of a large chlorinated solvent plume. This area's groundwater monitoring program uses more than 200 wells, and some of the contaminated wells lie within a half-mile of the site boundary. While it is believed that the major component of groundwater flow is not directly toward the site boundary, flow in the area is complex and difficult to predict. For this reason, particular attention is paid to data from wells along the site boundary and from those between A-Area/M-Area and the nearest population center, Jackson, South Carolina (figure 21 in the "SRS Maps" appendix on the CD accompanying this

report). During 2002, no chlorinated organics were detected in any of these wells. Well JAX–1 had very low concentrations (2.81 ppb) of toluene, which has a Primary Drinking Water Standard of 1,000 ppb.

Another part of the SRS perimeter that has received special monitoring attention is across the Savannah River in Georgia's Burke and Screven counties. Since 1988, there has been speculation that tritiated groundwater from SRS could flow under the river and find its way into Georgia wells. Considerable effort has been directed at assessing the likelihood of transriver flow, and 44 wells have been drilled by the USGS and the Georgia Department of Natural Resources (figure 22 in the "SRS Maps" appendix on the CD accompanying this report). SRS maintains and samples the wells annually; tritium was not detected in any of them during 2002.

Although contaminated groundwater in most SRS areas does not threaten the site boundary, it does have the potential to impact site streams. For this reason—and because of the need to meet the requirements of various environmental regulations—extensive monitoring is conducted around SRS waste sites and operating facilities, regardless of their proximity to the boundary. For details about this monitoring and the conditions at individual sites, one should refer to site-specific documents, such as RCRA corrective action reports or RCRA/Comprehensive Environmental Response, Compensation, and Liability Act RCRA facility investigation/remedial investigation reports.

Table 6–1 presents a general picture of groundwater conditions at SRS based on 2001 and 2002 monitoring data. The table shows the 2002 maximum concentrations for major constituents in the SRS areas that have contaminated groundwater—and how

these concentrations compare to the drinking water standards and the 2001 maximums. The table also shows where the contaminated water is most likely to outcrop.

The results shown are maximum values generally associated with wells very close to the contaminant source areas. The contaminants that eventually reach the streams some distance away usually have undergone considerable dilution and/or natural degradation. Hence, the water actually entering the streams often is at much lower concentrations than the observed maximums.

The table covers the most severely contaminated areas at SRS. In most cases, the maximum concentrations did not change significantly between 2001 and 2002. An exception was in P-Area, where there were very high detections, but these resulted from nonrepeatable "direct push" sampling conducted as part of a remedial site investigation. The results are not directly comparable to the 2001 results from wells because well sampling involves considerably more dilution than direct push, and because the 2002 results are from new locations. But the data illustrate that a few sites still exist where the nature and extent of contamination are not yet fully defined. Efforts toward that full definition are ongoing.

Another exception was in H-Area, where the tabulated results are misleading. The nonvolatile beta and gross alpha maximums were much lower in 2002, but this was because HTF–5, the area's most contaminated well, could not be sampled because of low water levels. Compared to the 2001 data excluding HTF–5, the 2002 maximums were still lower, but not by as much. The maximums dropped from 17.3 to 11.9 pCi/L for gross alpha and from 127 to 66.9 pCi/L for nonvolatile beta.

58 Savannah River Site

Table 6–1 Summary of Maximum Groundwater Monitoring Results for Major Areas Within SRS, 2001–2002

Page 1 of 1

Location	Major Contaminants	Units	2002 Maximum	MCL	2001 Maximum	Likely Outcrop Point
A-Area/M-Area	TCE PCE	ppb ppb	46,400 155,000	5 5	47,800 212,000	Tims Branch/Upper Three Runs Creek in East; Crackerneck Swamp in West
C-Area	TCE Tritium	ppb pCi/L	10,500 8,620,000	5 20,000	23,000 4,590,000	Tributaries of Fourmile Branch
D-Area	TCE Tritium Gross alpha	ppb pCi/L pCi/L	319 1,470,000 64.8	5 20,000 15	100 1,660,000 124	Savannah River Swamp
E-Area	Tritium TCE	pCi/L ppb	38,700,000 173	20,000 5	66,900,000 192	Upper Three Runs/ Crouch Branch in North; Fourmile Branch in South
F-Area	TCE Tritium Gross alpha Nonvolatile beta	ppb pCi/L pCi/L pCi/L	25 1,860,000 222 422	5 20,000 15 4 mrem/yr	8.76 2,060,000 168 525	Upper Three Runs/ Crouch Branch in North; Fourmile Branch in South
F Seepage Basins	Tritium Gross alpha Nonvolatile beta	pCi/L pCi/L pCi/L	12,000,000 800 2,740	20,000 15 4 mrem/yr	12,800,000 1,120 2,710	Fourmile Branch
H-Area	Tritium TCE Gross alpha ^a Nonvolatile beta ^a	pCi/L ppb pCi/L pCi/L	145,000 10.7 11.9 66.9	20,000 5 15 4 mrem/yr	109,000 8.18 274 633	Upper Three Runs/ Crouch Branch in North; Fourmile Branch in South
H Seepage Basins	Tritium Gross alpha Nonvolatile beta	pCi/L pCi/L pCi/L	8,580,000 30 1,210	20,000 15 4 mrem/yr	7,220,000 29 1,190	Fourmile Branch
R-Area	Tritium	pCi/L	168,000	20,000	285,000	Mill Creek in Northwest; tributaries of PAR Pond elsewhere
K-Area	Tritium TCE	pCi/L ppb	78,200,000 23	20,000 5	64,200,000 30	Indian Graves Branch
L-Area	Tritium TCE	pCi/L ppb	2,260,000 9.07	20,000 5	2,770,000 NA	L-Lake
P-Area	Tritium ^a TCE ^a	pCi/L ppb	19,100,000 35,500	20,000 5	5,000 15.8	Steel Creek in North; Meyer's Branch in South
Sanitary Landfill	TCE Vinyl chloride	ppb ppb	22.3 244	5 2	15 120	Upper Three Run Creek
TNX	TCE	ppb	1,680	5	1,390	Savannah River Swamp
CMP Pits	TCE	ppb	2,240	5	4,210	Pen Branch

a 2001 and 2002 data are not directly comparable because of differences in sampling methods/locations.